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PI: Allen Tannenbaum

Abstract

In this just completed research program, we developed several new directions for our work in controlled
active vision. We have developed a general framework for geometric observer-like structures based on non-
parametric implicit (level set) curve descriptions of dynamically varying shapes. Special emphasis was
given to the geometric nature of the dynamical system as well as the key issue of robustness. In particular,
we formulated an approach to the problem of information transport and filtering from a measurement curve
to an estimated curve.

We also formulated a methodology to assess measurement reliability that allows for the selection of
a local observer-gain. We should note that the dynamical nature of the evolving curves described implic-
itly allows for the observation of objects changing topology (i.e., objects breaking and merging during
propagation) for which shape priors can be naturally incorporated. The proposed observer structure is con-
tinuous/discrete, with continuous-time system dynamics and discrete-time measurements. Its state space
consists of an estimated curve position augmented by additional states (e.g., velocities) associated with
every point on the estimated curve. Multiple simulation models were proposed for state prediction. Mea-
surements are performed through segmentation algorithms and optical flow computations.

In this framework, we may naturally incorporate several different tools such as particle filtering as well
as various segmentation procedures. Accordingly, we described a novel information-based segmentation
algorithm, which because of its local/global nature seems ideal for tracking and was combined with particle
filtering for robust tracking in our geometric observer approach.
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1 Introduction
The problem and need for robust visual tracking algorithms is widespread for both both military and
civilian applications. Of particular relevance to the Air Force is tracking in tactical directed-energy en-
gagements. Here one requires designating an aimpoint on complex, resolved targets in the presence of
clutter, and maintaining the high-energy laser (HEL) on the aimpoint in the presence of target motion and
atmospheric-induced aberrations. To date, tracking has been performed with 2D target images, but the
recent development of angle-angle-range LADAR with high range resolution has enabled the possibility of
using 3D target images for aimpoint selection and tracking. The visual tracking methodology developed in
this work has proven to be very useful for such applications.

The overall technical approach uses a deterministic observer framework for visual tracking based on
non-parametric implicit (level set) curve descriptions. The observer is continuous/discrete, with continuous-
time system dynamics and discrete-time measurements. Its state space consists of an estimated curve po-
sition augmented by additional states (e.g., velocities) associated with every point on the estimated curve.
Several simulation models may be used for state prediction, and measurements may be performed utilizing
various segmentation techniques and optical flow computations. Special emphasis is given to the geometric
formulation of the overall dynamical system. The discrete-time measurements lead to the problem of geo-
metric curve interpolation and the discrete-time filtering of quantities propagated along with the estimated
curve. Interpolation and filtering are intimately linked to the correspondence problem between curves.
Correspondences are established by a Laplace equation approach. The proposed scheme is implemented
completely implicitly (by Eulerian numerical solutions of transport equations) and thus naturally allows for
topological changes and subpixel accuracy on the computational grid. It may be combined with geometric
particle filtering as well as knowledge-based segmentation.

The geometric observer structure developed in this AFOSR sponsored research program is flexible
enough to entertain the case where filtering position information is not utilized and may be replaced by
static position measurements in case of clearly segmentable image data, leading to reduced order observers
whose associated state information still needs to be filtered. Specifically, we have formulated the following
novel techniques in the past three years:

(i) Geometric Particle Filtering for Visual Tracking: Since filtering plays such an important role in our
observer theory, and since we intend to use the geometric observers in conjunction with active con-
tours, we have proposed a scheme that combines the advantages of particle filtering and geometric
active contours realized via level set models for tracking deformable objects. We have investigated
certain modifications to the standard particle filter (PF) [15, 3] as follows. First, we used an im-
portance sampling (IS) density [3] which can be understood as an approximation to the optimal IS
density when the optimal density is multi-modal. Next, we replaced IS by deterministic assignment
when the variance of the IS density is very small (which occurs when the local deformation is small).
Consequently, we are actually only sampling on the 6-dimensional space of affine deformations,
while approximating local deformation by the mode of its posterior. This is what makes the our
PF algorithm implementable in real time. (The full space of contour deformations is theoretically
infinite.)

(ii) Information-Theoretic Approaches to Segmentation: Segmentation is essential to our visual track-
ing framework. We therefore have developed a geometric contour based segmentation procedure
that naturally fits into our geometric framework. We found that an active contour flow derived from
an information-theoretic based criterion constituted a very reasonable approach in this regard. More
specifically, we have proposed an active contour model whose evolution is driven by the gradient
flow derived from an energy functional that is based on the Bhattacharyya distance. The approach
can be viewed as a generalization of those segmentation methods, in which the active contours max-
imize the difference between a finite number of empirical moments of the distributions “inside” and
“outside” the evolving contour. The model is very versatile and flexible since it allows one to easily
accommodate a number of diverse image features. Further it can incorporate both local and global
information.
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2 Summary of Work
We summarize some of the key results developed as part of our AFOSR research program.

2.1 Geometric Observers
In [35], we formulated a general framework for geometric observer-like structures based on non-parametric
implicit (level set) curve descriptions [38, 39]. Special emphasis was given to the geometric nature of the
dynamical system as well as the key issue of robustness. In particular, we formulated an approach to
the problem of information transport and filtering from a measurement curve to an estimated curve. We
proposed a way to assess measurement reliability that allows for the selection of a local observer-gain.
We should also note that the dynamical nature of the evolving curves described implicitly also allows for
the observation of objects changing topology (i.e., objects breaking and merging during propagation) for
which shape priors can be naturally incorporated.

This framework also fits in very naturally with geometric statistically based approaches for detection
and identification; see, e.g. [61, 45, 46, 47] and the references therein. Indeed, one can apply the theory of
Hidden Markov Models (HMM) for modelling the system dynamics and a particle filter to track the state
as sketched in Section 2.2. Shape and motion parameters may be included in the hidden state vector (see
our discussion below).

2.1.1 Observers for Tracking

The filtering of sensed data is a practical necessity when using the data to inform a feedback process. Real
world signals derived from sensors have noise and disturbances that must be treated prior to incorporating
the data into the feedback loop. Visual sensors are fundamentally different from traditional sensors (e.g.,
gyros, accelerometers, range sensors, GPS) in the sense that the true output for use in the feedback loop is
usually not directly obtained from the sensor proper, but is extracted using some computer vision algorithm.

Filtering methodologies may be divided in three broad (not necessarily mutually exclusive) subcate-
gories:

(1) Pre-filtering: Direct filtering of the image information obtained from the vision sensors, followed
by the application of a computer vision algorithm.

(2) Internal-state-filtering: Filtering the internal states associated with a computer vision algorithm,
based on the image information obtained from the vision sensors.

(3) Post-filtering: Direct application of a computer vision algorithm to the data obtained from the vision
sensors, followed by the filtering of the output of the computer vision algorithm.

To illustrate the difference between these approaches, assume the objective is to find the centroid of
a moving object given noisy image information from a vision sensor. For (1), the images are spatio-
temporally filtered, the object is extracted from a filtered image, and the centroid is computed given the
extracted object (the segmentation). For (3), the object is segmented from a static image, the centroid is
computed, and the centroid position is filtered given the centroids from previous image frames. For (2),
the object itself is modeled dynamically (system states being position, shape, velocity, etc.), the object
states are filtered based on the spatio-temporal image information of the vision sensor, and the centroid
is extracted from the internal state of the modeled object. All methods may use a model for the expected
motion, resulting in model-based filtering methodologies. Post-filtering may be regarded as a subclass
of internal-state-filtering, where the state-space is identical to the output space of the computer vision
algorithm (e.g., the centroid position). In turn, this means that internal-state-filtering describes a richer
class of systems.

Observers are internal-state-filters. They are a classical concept in control and estimation theory, where
system states need to be reconstructed from measurement data. Examples include the classical determin-
istic Luenberger observer, the Kalman filter and its derivatives (the unscented Kalman filter, the extended
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Kalman filter), as well as particle filters; see [48] and the references therein. They all share the common
observer ingredients:

(O1) a dynamical state model and a measurement model of the system to be observed for state prediction,

(O2) a measurement methodology (e.g., a device to measure velocity, a thermometer, an object segmen-
tation, etc.),

(O3) and an error correction scheme to reconcile measurement and prediction to form the state estima-
tion.

Irrespective of the observer similarities (O1)-(O3), observer approaches differ in terms of the system
and measurement class for which they are designed, and the estimation method being employed. System
dynamics and system measurements may both be either discrete or continuous though the most common
observers used in practice are either completely discrete or have continuous-time system dynamics and
discrete-time measurements. In practice, measurements will be noisy and the system model and the mea-
surement model will only be correct up to modelling errors (“modelling noise”). Observers need to be
robust to such uncertainties. If noise processes (from modelling or measurement) are not neglected, system
descriptions are based on stochastic differential or stochastic difference equations. In the most general set-
ting an observer then becomes an estimation procedure for the conditional density function relating system
states to the time history of measurements.

For problems in visual tracking, in order to make the observation problem tractable, we have proposed
a novel observer design on the space of planar curves or surfaces in space (regarded as the boundaries
of shapes), where the system model is continuous-time and the measurements are discrete-time. Special
emphasis was given to a geometric formulation of the observer. The proposed approach may be viewed as
a geometric filtering method for the class of computer vision algorithms using curve evolutions where the
common observer building blocks (O1-O3) are reinterpreted in the context of dynamic curve evolution.

In our framework, by combining multiple measurements (e.g., shape based and non-shape based), we
can assess the quality of measurements locally, and then locally adapt (e.g, a velocity error injection gain).
We make extensive use of previous work on establishing correspondences between curves to transport
measured quantities from the measurement to the evolving estimated curve.

2.1.2 Curves with Vector Fibers and State Evolution

We very briefly review some of the material on curve evolution theory here. We will be using closed planar
curves to represent the boundaries of objects in this framework. The space of smooth closed planar curves,
denoted by C∞(S1;R2), forms an infinite-dimensional manifold. When dealing with the evolution of
curves, an additional temporal parameter is added to the curve description. In short, planar curve evolution
may be described as the time-dependent mapping: C(p, t) : S1 × [0, τ) 7→ R2, where p ∈ [0, 1] is the
curve parameter, C(p, t) = [x(p, t), y(p, t)]T , and C(0, t) = C(1, t). Define the interior and the exterior of
a curve C on the domain Ω ⊂ R2 as

int(C) :=
{
x ∈ Ω : (x− xc)

TN > 0, ∀xc ∈ C
}
, and ext(C) := Ω \ int(C),

where N is the unit inward normal to C.
Properly embedding a manifold in a larger dimensional space avoids the need for parametric repre-

sentations. Within the context of closed curves, C can be represented implicitly by a level set function
Ψ : R2 × [0, τ) → R [39], where

Ψ(0, t)−1 = trace(C(·, t)).
Frequently, Ψ is chosen to be a signed distance function. Given a curve evolution equation

Ct = v,

where v is a velocity vector and subscripts denote partial derivatives, the corresponding level set evolution
equation is

Ψt + vT∇Ψ = 0.
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In order to define a dynamical model for curve evolution, the curve state space needs to be expanded to
include curve velocities. The corresponding space is now a vector bundle. In brief, a vector bundle is a fam-
ily of vector spaces parameterized by another space, in this case the space of closed planar curves. Locally,
the curve vector bundle is diffeomorphic to the cross product of the space of closed curves, C∞(S1;R2),
and a given model vector space, W . Typically, an element w ∈ W will be a vector-valued function defined
on trace(C(·, t)). However, given an implicit representation for the curve and its vector bundle, a time-
varying vector fiber element corresponding to the curve represented by Ψ is given by w : R2×[0, τ) → R2,
an appropriately extended version of the curve’s fiber element.

When defining the evolution or deformation of a curve, the transport of the fiber quantities with the
curve must also be defined. The transport of the fiber component, w, in the implicit representation is
induced by the curve evolution through the advection equation{

w(·, 0) = w0,

wt +Dw · v = 0,

where Dw denotes the Jacobian of w, and w0 are the fiber quantities being propagated.

2.1.3 General Observer Structure

In the classical observer framework (e.g., as proposed by Luenberger [31]) there are prediction and mea-
surement components. Prediction incorporates the dynamical assumptions made regarding the plant or,
in the context of visual tracking, the movement of the object. In analogy with classical observer theory,
our proposed observer structure will contain a prediction and a measurement part. To evolve the overall
estimated curve, the prediction influence has to be combined with the measurement influence, leading to
the correction step.

The observer to be defined is a continuous/discrete observer, i.e., the system evolves in continuous time
with available measurements at discrete time instants k ∈ N+

0 ,(
C
w

)
t

=

(
v(C,w, t)
f(C,w, t)

)
+w(t), and zk = hk

((
C
w

))
+ sk,

where w and sk are the system and measurement noises, respectively, C represents the curve position, w
denotes additional states transported along with C (e.g., velocities), and (·)k denotes quantities given at
discrete time points tk.

The addition of a prediction model for the active contour, a measurement model for the active contour,
and a correction step to the evolution and measurement described above form the general observer structure.
The prediction and measurement models(

Ĉ
ŵ

)
t

=

(
v̂(Ĉ, ŵ, t)

f̂(Ĉ, ŵ, t)

)
, ẑk = ĥk

(
Ĉ
ŵ

)
, (1)

simulate the true system dynamics and the measurement process, where the hat denotes simulated quanti-
ties.

For simplicity, consider the case when the complete state is measurable, hk = id (the identity map).
The proposed continuous/discrete observer is(

Ĉ
ŵ

)
t

=

(
v̂(Ĉ, ŵ, t)

f̂(Ĉ, ŵ, t)

)
, ẑk =

(
Ĉk
ŵk

)
, (2)(

Ĉk(+)
ŵk(+)

)
= Φ

(
Xerr;

(
Ĉk(−)
ŵk(−)

)
,

(
Ck
wk

)
;

(
KC

k
Kw

k

))
,

where (−) denotes the time just before a discrete measurement, (+) the time just after the measurement, Φ
is a correction function depending on the gain parameters KC

k (a scalar) and Kw
k (a matrix), and (Xerr) is

the error vector field. Figure 1 shows the observer structure as given in equation (2). In what follows, these
observer components as applied to closed curves are described in further detail.
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(a) Classical Euclidean Observer Structure.
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(b) Symbolic Observer Structure for Curves.

Figure 1: General Observer Structure. In the Euclidean case, simple subtractions and additions are used for
estimation error computations and state corrections. For curves, estimation errors are represented through
an error vector field, relating the prediction to the measurement. This also requires the computation of
a homotopy between the predicted and the measured curves. The error vector field Xerr is computed
through a correspondence procedure. To do error correction in the curve case requires the knowledge of
the predicted measurement, the actual measurement, as well as the error vector field (denoted by the thick
black input line to the system model). The measurement makes use of standard segmentation algorithms
and the system model is given by a chosen prior. (For representational simplicity the observer structure
figures show continuous time measurements. In the proposed discrete-time measurement case, the system
state only gets updated at discrete time instants.)

2.1.4 Motion Priors

The prediction model part is a motion prior, describing the time-evolution of the closed curve, and pos-
sibly its vector fiber. It is problem dependent and should model as precisely as possible the dynamics of
the object(s) to be tracked. Ideally the measurement part of an observer should only need to correct for
inaccuracies due to noise. In practice it will be difficult (or even impossible) to provide an exact motion
model so that the measurement part also needs to compensate for inaccuracies of the motion prior.

With this in mind, several priors are described in this section, increasing in complexity: the static prior,
the constant velocity prior, the quasi-dynamic prior, and the dynamic elastic prior. These should be pointers
to relatively general-purpose priors. They should be substituted by more accurate problem-specific priors,
if available.

The simplest possible prior is the static prior, i.e., no motion at all, Ĉt = 0. For visual tracking the
movement of a curve is then only driven by the measurement part of the observer. Were it not for the
measurements, the curve would stay fixed at one position. The next simplest prior is the constant velocity
prior, Ĉtt = 0.

Next, suppose that although the dynamics could not be predicted in closed form, the instantaneous
velocity could be approximated or somehow estimated. In this case, the instantaneous velocity information
could be used to propagate forward the curve,

Ĉt = (Xest ◦ C · N )N ,

where Xest is the estimated instantaneous velocity field. This is called the quasi-dynamic prior. One
example of a quasi-dynamic prior would be to use the optical flow vector field as a motion prior. The optical
flow field used could be computed using prior information or using current information. Technically, the
latter suggestion is not a proper prior in our framework, since it implicitly depends on the current image
through the optical flow calculation. Alternatively, any justifiable method resulting in a flow field for the
closed curve could be used. The quasi-dynamic motion prior would be useful in cases where there is rich
target motion and an available instantaneous model of flow for the visual information, but where a faithful
model is not possible.
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The dynamic elastic prior is based on the dynamic active curve described in [37] where the action
integral L =

∫ t1
t=t0

∫ 1

0

(
1
2µ∥Ĉt∥

2 − a
)
∥Ĉp∥ dp dt is minimized. In contrast to the dynamic curve evolution

of [37], a does not contain image information, but is a design parameter for curve regularization (it can
either be a constant or a function over space and time), since the prior should not depend on underlying
image information. The dynamic elastic prior for normal curve propagation is then given by:

µĈtt =
(
1

2
µ∥Ĉt∥2 + a

)
κN − (∇a · N )N − 1

2
µ(∥Ĉt∥2)sT . (3)

If we give up our strict image independence of the prior and allow image influence as for the quasi-dynamic
optical flow prior, a could become image dependent again and may be set to an image stopping function;
this transforms equation (3) into the equation for the dynamic active curve [37].

Additional dynamic priors have been tested. These include dynamic priors that are area-preserving,
length-preserving, smoothness-limiting, etc. Shape restrictions for dynamic priors could for example be
accomplished by projecting the dynamic evolution onto a certain, specified shape equivalence class. Fi-
nally, the dynamical model may include additional states. These could for example be local estimates of
state uncertainty, marker particles, etc, and would involve an expansion of the model vector space W .

2.1.5 Measurements

Measurements are used to drive the estimated model’s states to the true system states. This is necessary,
since generally the system model will be imperfect and the designed observer needs to be robust with
respect to disturbances. For visual tracking, it is difficult to come up with accurate motion models, so
simple approximations need to suffice.

The predicted measurements are based on the current state of the observer. Any of the standard seg-
mentation algorithms can be used to come up with the “real” measurement that the predicted one has to be
compared against to define the error measure.

This observer set-up has two crucial advantages:

• Any standard (static or dynamic) segmentation algorithm can be employed for the measurement.
While the dynamic model is a model of a dynamically evolving curve, the measurement can utilize,
for example, area-based or region-based segmentation algorithms.

• Static and dynamic approaches incorporating shape information exist [65]. If these approaches are
used for the measurement curve, shape information can be introduced into the infinite dimensional
model without the need for the explicit incorporation of the shape information into the dynamical
model.

The inclusion of shape information as a constraint on the measurements contrasts with previous ap-
proaches aimed at including shape information into the dynamics of an evolving curve itself [7] where
motion is restricted to affine motion. Using a finite dimensional motion group reduces the dimensionality
of the evolution state space. Whereas a general curve evolution is infinite-dimensional, affine motion con-
straints lead to finite-dimensional descriptions and are thus relatively easy to implement and usually fast.
To account for deviations from the motion model, correction terms need to be introduced, as is done in the
deformotion work described in [65].

Position measurements can be accomplished by any static segmentation method, which may include
shape information. Potential candidates are the classical geodesic active contour model [8, 26], or the Chan-
Vese functional [9] (see our discussion in Section 2.2.5), or the information-based approach described in
Section 2.3. Measurements of the vector fiber quantities are performed based on the location of the position
measurements, if possible. In the case of dynamically evolving curves, velocities need to be measured on
the measured curve via optical flow.
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2.1.6 Error Correction

The observer framework proposed here requires a methodology to compare the predicted curve configura-
tion to the measured curve configuration. Minimally, the comparison requires establishing unique cor-
respondences between points on the measured and the predicted curve, e.g., defining a diffeomorphic
homotopy between the two curves. The homotopy will be obtained through the flow of an error vector
field defined between the two curves. In what follows, we describe the propagation of state information
along the error vector field and the implicit computation of signed distance functions from which the curve
correction homotopy is defined.

Error Vector Field

The error vector field to be defined is the manifold analogue to the measurement residual of an observer.
Due to the geometry of the space of closed curves, there is no unique way to define the error vector field. In
fact, one could consider the definition of the error vector field to be a design choice in setting up an observer
for closed curves. Here, the method chosen is a Laplace equation based approach, whose error vector field
induced flow is a diffeomorphism, which is easy to implement and fast to compute. Other approaches to
define an error vector field exist, and in particular, diffeomorphic nonlinear registration methodologies [2]
have been used as well and constitute a continuing research problem.

The variational formulation leading to the Laplace problem is

min
u

∫
∥∇u∥2 dΩ, s.t. trace(C0) = u−1(0), trace(C1) = u−1(1), (4)

where C0 is the source curve (the measurement curve) and C1 is the target curve (the predicted curve). Its so-
lution requires careful construction of the interior and boundary conditions. The source curve and the target
curve define the following solution domain decomposition of the total space Ω, R := int(C0)⊖ int(C1),
Rpi := int(C0)∩ int(C1), and Rlo := Ω \

(
R ∪Rpi

)
, where int(C) denotes the interior of the curve C and

⊖ is the set-symmetric difference.
To simplify the solution of (4) computationally, we change the boundary conditions to 0 for the interior

curve parts (∂Rpi \ (C0 ∩ C1)) and to 1 for the exterior curve parts (∂ (R ∪Rpi)). Note that both the
exterior and the interior curve parts may be composed of subsets of C0 and C1 if C0 and C1 intersect.
By changing the boundary conditions, we can compose a continuous solution function globally over all
of the computational domain. The computed gradient field of this continuous solution may be reversed
with respect to the original formulation (4), which can easily be accounted for after its computation. Thus
the modified solution yields the same gradient field as the original formulation, which is the quantity of
interest for the purpose of the observer design. Via the calculus of variations, a solution to (4) in the domain
enclosed by the source and target curves with modified boundary conditions satisfies

∆us(x) = 0, x ∈ R

with the boundary conditions

us(x) = 0, x ∈ ∂Rpi \ (C0 ∩ C1) ,
us(x) = 1, x ∈ ∂ (R ∪Rpi) , (5)

which is a simple reformulation of the minimization problem (4). To facilitate easy numerical computations
of the error vector field, we extend the solution to the remainder of the image domain, by solving an
additional Laplace equation on Rlo and a Poisson equation on Rpi:

∆upi(x) = c x ∈ Rpi, c > 0

∆ulo(x) = 0, x ∈ Rlo,
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with boundary conditions

upi(x) = 0, x ∈ ∂Rpi,

ulo(x) = 1, x ∈ ∂ (R ∪Rpi) ,

ulo(x) = 2, x ∈ ∂Ω.

The combined solution

u(x) =


ulo(x), x ∈ Rlo,

upi(x), x ∈ Rpi,

us(x), x ∈ R

defines the error vector field Xerr,

Xerr(x) :=


∇u/∥∇u∥, x ∈ R,

∇uo/∥∇uo∥, x ∈ Rlo,

∇ui/∥∇ui∥, x ∈ Rpi

on Ω via the normalized gradient.
To illustrate the behavior of Xerr assume the measured curve as C0 and the predicted curve as C1, where

C0 is strictly interior of C1. Then Xerr becomes a vector field flowing the measured curve into the predicted
curve at unit speed. Flowing at unit speed implies that particles starting at C0 and flowing according to
Xerr will reach C1 at different times (proportional to the distance covered). The advantage of the Laplace
based correspondence scheme is that it is fast, parametrization-free and allows for topological changes. The
main disadvantage is that it may lead to unwanted correspondences since it is not invariant to translations,
rotations or scale. Thus other correspondence methodologies will be considered in our upcoming research
program [2].

Information Transport

The error vector field Xerr defined above will be used to geometrically interpolate between two curves,
thereby defining the curve correction homotopy Φ(Xerr; Ĉ, C;KC) and also inducing a state correction
homotopy Φ(Xerr, (Ĉ, q̂), (C, q);K). Geometric interpolation is achieved by measuring the distance be-
tween correspondence points along the characteristics, defined by the error vector field, that connect them
and subsequent flow up to a certain percentage of this distance. Performing this procedure entails solving
a series of associated transport equations.

Given that the curve evolution is performed implicitly, preserving this feature of the algorithm requires
implicit information transport between the measured and the predicted curves. Consider the advection
equation with source term s and velocity field X,

xt +XT∇x = s. (6)

The characteristic curves, c′(t) = X ◦ c(t), satisfy the ordinary differential equation

d

dt
x(c(t), t) = s.

Thus, to advect vector quantities w along a velocity field X , solve{
w(·, 0) = w0,

wt +Dw ·X = 0,
(7)

where w0 denotes the given vector quantities w at time 0, i.e., the initial conditions of the partial differential
equation (7), and Dw denotes the Jacobian of w. The vector quantity w may include for example local
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velocities. To be able to interpolate curve positions, which will subsequently be used to define the curve
correction homotopy given below, distances between curves need to be defined. Since Euclidean distances
may not be desirable for complicated curve shapes, the proposed observer framework uses a distance
measure induced by a flow field X (here, the error vector field Xerr). Given a flow field X and a particle p
initially located at x0, its travelling distance at position x is defined as the arc-length of the characteristic
curve, whose tangents are aligned with X , connecting x0 and x. To measure traveling distances from a
complete set of initial locations, as specified by d−1(·, 0), solve{

d(·, 0) = 0,

dt +
1

∥X∥X
T ∇d = 1,

(8)

where X ̸= 0 is assumed. Equations (6)-(8) are Hamilton-Jacobi equations. Efficient numerical methods
exist to compute steady-state solutions of Hamilton-Jacobi equations [24].

Curve Correction Homotopy

When Ψ̂ and Ψ implicitly represent the curves Ĉ and C the interpolation can be accomplished implicitly to
subpixel accuracy. In order to determine the travelling distance from each curve to the other along Xerr,
compute

d̂t + S(Ψ̂)XT
err∇d̂ = S(Ψ̂), d̂(x, 0) = Ψ̂,

(dm)t + S(Ψ)XT
err∇dm = S(Ψ), dm(x, 0) = Ψ,

(9)

where

S(x) :=

{
0, if ∥x∥ ≤ 1,

x√
ϵ+x2

, otherwise.

Here, S(x) denotes a smoothed sign function, which allows for the bidirectional measurement of traveling
distance, along Xerr (resulting in positive distance values) and in the opposite direction of Xerr (resulting
in negative distance values). The results may be interpreted as signed distance level set functions warped
with respect to the error vector field Xerr. The distance error functions, d̂ and dm, obtained by solving the
equation (9) are interpolated to yield the interpolated distance function di,

di = (1− α)d̂+ αdm, w ∈ [0, 1],

which subsequently gets redistanced according to

(Ψ̂i)t + S(Ψ̂0
i )∥∇Ψ̂i∥ = S(Ψ̂0

i ), Ψ̂i(x, 0) = di,

arriving at the corrected distance function Ψ̂i, The weighting factor α geometrically interpolates the esti-
mated and the measured curve.

Vector Fiber Transport

In order to compare and correct the vector fiber quantities, they need to be transported to the new interpo-
lated curve, located somewhere within the region R. For the measured quantities wm and for the estimated
quantities ŵ utilize the corresponding transport equations

(pm)t + S(Ψ)XT
err∇(pm) = 0, pi(x, 0) = wi,

(p̂)t + S(Ψ̂)XT
err∇p̂ = 0, p̂(x, 0) = ŵ,

to propagate the values throughout the domain.
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Performing the Error Correction

The error correction scheme builds on the framework described above. We assume that the correction
function can be written as

Φ

(
Xerr;

(
Ĉk(−)
ŵk(−)

)
,

(
Ck
wk

)
;

(
KC

k
Kw

k

))
=

 ΦC
(
Xerr; Ĉk(−), Ck;KC

k

)
Φw

(
Xerr;

(
Ĉk(−)
ŵk(−)

)
,

(
Ck
wk

)
;Kw

k

) .

The error correction for the curve position is then

Ĉk(+) = ΦC
(
Xerr; Ĉk(−), Ck;KC

k

)
,

which amounts to curve interpolation and gets computed as

trace(Ĉk(+)) = Ψ̂i(0)
−1, KC

k = α = αk.

State information needs to be exchanged and compared between the measured and the estimated curves.
Further, the final filtering results needs to be associated with Ĉk(+). This is accomplished by the error
correction for the vector fiber

ŵk(+) = Φw

(
Xerr;

(
Ĉk(−)
ŵk(−)

)
,

(
Ck
wk

)
;Kw

k

)
which amounts to point-wise filtering computed as

(ŵi)k(+) = (p̂i)k + (Kij)
w,w
k ((pj)k − (p̂j)k) + (Ki)

w,C
k

(
dm − d̂

)
and evaluated at Ĉk(+), where repeated indices are summed over and Kw

k is assumed to be block-diagonal
and decomposes into a gain matrix for the fiber quantities (Kw,w

k ) and for the curve position error (Kw,C
k ).

Table 1 gives a description of the overall geometric observer algorithm.
Finally, we should note that the observer described here is a full-order observer, that is, all states are

observed.

2.1.7 Other Results on Geometric Observers

We have developed a geometric design methodology for observing or filtering dynamically evolving curves
over time. State measurements are performed via static segmentations, making the framework flexible and
powerful, since any kind of curve segmentation may be used for the measurement step, including curve
segmentations incorporating shape information. In this way, measurements may be used to induce shape
information to the estimated curve without the need for explicit incorporation of shape information into the
motion prior. In comparison to most previous approaches there is no finite dimensional motion model. The
observer framework is geometric,leading to geometrically meaningful observer gains. Further, the overall
methodology extends to closed hypersurfaces of codimension one which represent the boundaries of 3D
shapes and has been carried out in the past year as part of our AFOSR work. In our AFOSR research, we
have also introduced statistical information that requires the notion of a mean shape of curves and curve
covariances as well as adaptive observer gains based on curve statistics.

2.2 Geometric Particle Filtering
In conjunction with the geometric observer theory, we have developed a geometric particle filter framework
in [45, 46, 47].
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Geometric observer algorithm:
repeat

1) Propagate curve under the prediction model (Section 2.1.4) for the time-
span

between two image measurements (usually given by the camera frame rate).
Initial conditions are given by the current observer state.

2) Obtain curve measurements by image segmentation, optical flow, etc. (Sec-
tion 2.1.5).

3) Reconcile internal observer state with the measurements by error correc-
tion (Section 2.1.6):

a) Establish the error vector field (to induce correspondences; Sec-
tion 2.1.6).

b) Flow measurements and observer states along the error vector field (Sec-
tion 2.1.6).

c) Perform update of the internal observer state (Section 2.1.6).

until end of tracking sequence

Table 1: Description of the geometric observer algorithm.

The overall algorithm is based on three modifications of the standard particle filter (PF) [15, 3]: (i)
First, we utilize an importance sampling (IS) density [3] which can be considered as an approximation
to the optimal IS density when the optimal density is multi-modal. (ii) We replace IS by deterministic
assignment when the variance of the IS density is very small. Because of this step, we are actually only
sampling on the 6-dimensional space of affine deformations, while approximating the local deformation by
the mode of its posterior. This is what makes our PF algorithm implementable in real time. (iii) Further,
we proposed a technique for the computation of an approximation to the mode of the posterior of the
local deformation. As explained in [45, ?, 47], these modifications are useful to reduce computational
complexity of any large dimensional state tracking problem.

2.2.1 The Particle Filtering Algorithm

This section describes the basics of the proposed method. Let Ct denote the contour at time t (Ct is repre-
sented as the zero level set of Ψt(x), i.e. Ct = {x ∈ R2 : Ψt(x) = 0} [39]), and At denote a 6-dimensional
affine parameter vector with the first 4 parameters representing rotation, skew and scale, respectively, and
the last 2 parameters representing translation. Note that in this section (Section 2.2) and in Section 2.3
below, we let Ψt(x) := Ψ(x(t), t). Previously, the subscript t denoted partial derivative.

We employ the affine parameters (At) and the contour (Ct) as the state, i.e., Xt = [At, Ct] and treat
the image at time t as the observation, i.e., Yt = Image(t). Denote by Y1:t all the observations until time
t. Particle filtering [15] allows for recursively estimating p(Xt|Y1:t), the posterior distribution of the state
given the prior p(Xt−1|Y1:t−1). We utilize the basic theory of particle filtering here as described in [15].
The general idea behind the proposed algorithm is as follows:
• Importance Sampling: Predict the affine parameters At (parameters governing the rigid motion of the

object) and perform importance sampling for Ct to obtain local deformation in shape, i.e.,

• Generate samples {A(i)
t , µ

(i)
t }Ni=1 using:

• Perform L steps of curve evolution on each µ
(i)
t :

C(i)
t = fCE(µ

(i)
t , Yt, u

(i)
t,def ), u

(i)
t,def ∼ N (0,Σdef ) .
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• Weighting and Resampling: Calculate the importance weights and normalize [15], i.e.,

w̃
(i)
t =

p(Yt|X(i)
t ) p(X

(i)
t |X(i)

t−1)

q(X
(i)
t |X(i)

t−1, Yt)
∝ e

−Eimage(Yt,C
(i)
t )

σ2
obs e

−d2(C(i)
t ,µ

(i)
t )

σ2
d

N (fCE(µ
(i)
t , Yt),Σdef )

, w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

,

where d2 is any distance metric between shapes (see Section 2.2.7) and Eimage is any image based en-
ergy functional (see Section 2.2.5). Resample to generate N particles {A(i)

t , C(i)
t } distributed according

to p(At, Ct|Y1:t). The resampling step improves sampling efficiency by eliminating particles with very
low weights. We now briefly explain in detail each of the preceding steps.

2.2.2 The System and Observation Model

The problem of tracking deforming objects can be separated into two parts: a) Tracking the global rigid
motion of the object; b) Tracking local deformations in the shape of the object, which can be defined
as any departure from rigidity (non-affine deformations). The global motion (affine transformation) can
be modeled by the 6 parameters of an affine transformation, At, using a first order Markov process. We
assume that the local deformation from one frame to the next is small and can be modeled by deformation
in the shape of the contour Ct. Thus, the state vector is given by Xt = [At, Ct]. The system dynamics based
on the above assumption can be written as:

At = fpAt−1 + ut, ut ∼ N (0,ΣA),

x̂ =

[
At,1 At,2

At,3 At,4

]
x+

[
At,5

At,6

]
, ∀x ∈ Ct−1, x̂ ∈ µt, µt := At(Ct−1), (10)

Ct = fdef (µt, ut,def ), ut,def ∼ N (0,Σdef ),

where fp models global rigid motion of the object while fdef is a function that models the local shape
deformation of the contour.

We further assume that the likelihood probability, i.e., probability of the observation Yt = Image(t)

given state Xt, is defined by p(Yt|Xt) = p(Yt|Ct) ∝ e
−Eimage(Ct,Yt)

σ2
obs , where Eimage is any image depen-

dent energy functional and σ2
obs is a parameter that determines the shape of the pdf (probability density

function). The normalization constant in the above definition has been ignored since it only affects the
scale and not the shape of the resulting pdf.

In general, it is not easy to predict the shape of the contour at time t (unless the shape deformations
are learned a priori) given the previous state of the contour at time t − 1, i.e., it is not easy to find a
good function fdef that can model the shape deformations and allows one to sample from an infinite
(theoretically) dimensional space of curves. Thus, it is very difficult to draw samples for Ct from the
prior distribution. This problem can be solved by doing importance sampling [10], and is one of the main
motivations for doing curve evolution as explained in the following sections. Thus, samples for At can be
obtained by sampling from N (fpAt−1,ΣA) while samples for Ct are obtained using importance sampling,
i.e., we perform importance sampling only on part of the state space. This technique of using importance
sampling allows for obtaining samples for Ct using the latest observation (image) at time t [59].

The central idea behind importance sampling [10] is as follows: Suppose p(x) ∝ q(x) is a probability
density from which it is difficult to draw samples and q(x) is a density (proposal density or importance
density) which is easy to sample from, then an approximation to p(·) is given by p(x) ≈

∑N
i=1 w

iδ(x −
xi), where wi ∝ p(xi)

q(xi) is the normalized weight of the i-th particle. So, if the samples, X
(i)
t , were

drawn from an importance density, q(Xt|X1:t−1, Y1:t), and weighted by w
(i)
t ∝ p(X

(i)
t |Y1:t)

q(X
(i)
t |X(i)

1:t−1,Y1:t)
, then∑N

i=1 w
(i)
t δ(X

(i)
t −Xt) approximates p(Xt|Y1:t).
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In this proposal, the state is assumed to be a hidden Markov process, i.e.,

p(Xt|X1:t−1) = p(Xt|Xt−1), p(Yt|X1:t) = p(Yt|Xt),

and we further assume that the observations are conditionally independent given the current state, i.e.
p(Y1:t|X1:t) =

∏t
τ=1 p(Yτ |Xτ ). Furthermore, if the importance sampling density is assumed to depend

only on the previous state Xt−1 and current observation Yt, we get q(Xt|X1:t−1, Y1:t) = q(Xt|Xt−1, Yt).

This gives the following recursion for the weights [10]: w
(i)
t = w

(i)
t−1

p(Yt|X(i)
t )p(X

(i)
t |X(i)

t−1)

q(X
(i)
t |X(i)

t−1,Yt)
. The impor-

tance density q(.) and the prior density p(.) can now be written as

q(Xt|Xt−1, Yt) = p(At|At−1) q(Ct|µt, Yt), p(Xt|Xt−1) = p(At|At−1) p(Ct|µt), (11)

where q(At|At−1) = p(At|At−1), since At is sampled from p(At|At−1) = N (fpAt−1,ΣA). Thus, the
weights can be calculated from:

w
(i)
t = w

(i)
t−1

p(Yt|X(i)
t ) p(C(i)

t |µ(i)
t )

q(C(i)
t |µ(i)

t , Yt)
. (12)

The probability p(Ct|µt) can be calculated using any suitable measure of similarity between shapes (mod-

ulo a rigid transformation). One such measure is to take p(Ct|µt) ∝ e
−d2(Ct,µt)

σ2
d , where σd is assumed to

be very small such that it satisfies the constraint of (10) in [44] and d2 is any metric on the space of closed
curves. In this approach, we employ the distance measure given in Section 2.2.7.

2.2.3 Approximating the Optimal Importance Density

The choice of the importance density is a critical design issue for implementing a successful particle fil-
ter. The proposal distribution q(·) should be such that particles generated by it, lie in the regions of high
observation likelihood. One way of doing this is to use a proposal density which depends on the current
observation [59]. The optimal importance density (one that minimizes the variance of the weights condi-
tioned on Xt−1 and Yt) has been shown to be p(Xt|Xt−1, Yt). But in many cases, it cannot be computed
in closed form. For unimodal posteriors, it can be approximated by a Gaussian with mean given by its
mode, which is also equal to the mode of p(Yt|Xt) p(Xt|Xt−1). In our case, the distribution p(At|At−1)
can be multi-modal, and hence we have employed the following: Sample At from the prior state transition
kernel, p(At|At−1), and find the mode of p(Yt|Xt) p(Ct|µt) to obtain samples for Ct. Notice that, for
small deformations, p(Yt|Xt) p(Ct|µt) is indeed unimodal [44]. Using (11) and the likelihood probability
p(Yt|Xt) defined before, finding the mode of p(Yt|Xt) p(Ct|µt) is equivalent to finding the minimizer of

Etot(Ct, µt, Yt) =
Eimage(Ct, Yt)

σ2
obs

+
d2(Ct, µt)

σ2
d

.

Notice that from this energy point of view, it is clear why we can ignore the partition constants (in the
definition of p(Yt|Ct) and p(Ct|µt)) which are needed to normalize the various densities so that they define
proper probability measures. Indeed, we are only interested in the minimizer of Etot.

Finding the exact minimizer of Etot for each particle at each t is computationally expensive and hence
we use the following approximation: Assuming a small deformation between t − 1 and t, both the terms
in this summation will be locally convex (in the neighborhood of the minimizers of both terms), and so
the minimizer of the sum will lie between the individual minimizers of each term. Thus, an approximate
solution to find the minimum of Etot will be to start from the minimizer of one term and go a certain
distance (i.e., a certain number of iterations of gradient descent) towards the minimizer of the second. It
is easy to see that C = µt minimizes the second term, and hence, starting with µt as the initial guess for
C, and performing L iterations of gradient descent will move C a given distance towards the minimizer of
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Eimage, where L is chosen experimentally. We would like to reiterate here that the optimal choice of L
will be one that finds a curve C to minimize Etot, but to avoid performing the complete minimization of
Etot, we are doing this approximation, and have found that it works well in practice.

Using the above technique, we are actually only sampling on the 6-dimensional space of affine defor-
mations, while approximating local deformation by the mode of its posterior. In general, the “mode tracker”
method described above reduces the computations significantly.

2.2.4 Curve Evolution for Computing Ct
We now describe how to obtain samples for Ct by doing gradient descent on the energy functional Eimage.
This operation is represented by the function fCE . The non-linear function fCE(µ, Y, udef ) is evaluated
as follows (for k = 1, 2, ..., L):

µ0 = µ, µk = µk−1 − αk∇µEimage(µ
k−1, Y, udef ), fCE(µ, Y, udef ) = µL . (13)

The above equation is basically a PDE which moves an initial guess of the contour so that Eimage is min-
imized. Note that udef ∼ N (0,Σdef ) is a noise vector that is added to the “velocity” of the deforming
contour at each point x ∈ µ (see [39, 25] for details on how to evolve a contour using level set represen-
tation). For practical examples with small deformations, Σdef is very small and in fact, even when one
does not add any noise to fCE , there is no noticeable change in performance. In numerical experiments,
we have not added any noise to the curve evolution process. Thus, the importance sampling density for At

is p(At|At−1) while that for Ct is q(Ct|µt, Yt) = N (fCE(µt, Yt),Σdef → 0). The curve Ct thus obtained
incorporates the prediction for global motion and local shape deformation.

Alternative Interpretation for L-Iteration Gradient Descent

We perform only L iterations of gradient descent since we do not want to evolve the curve until it reaches
a minimum of the energy, Eimage. Evolving to the local minimizer is not desirable since the minimizer
would be independent of all starting contours in its domain of attraction and would only depend on the
observation, Yt. Thus the state at time t would loose its dependence on the state at time t− 1, and this may
cause loss of track in cases where the observation is bad. In effect, choosing L to be too large (taking the
curve very close to the minimizer) can move all the samples too close to the current observation and thus
result in reduction of the variance of the samples leading to “sample degeneracy.” At the same time, if L is
chosen to be too small, the particles will not be moved to the region of high observation likelihood and this
can lead to “sample impoverishment.” The choice of L depends on how much one trusts the system model
versus the obtained measurements. Note that, L will of course also depend on the step-size of the gradient
descent algorithm as well as the type of PDE used in the curve evolution equation.

Based on the above discussion, the importance weights in (12) can be calculated as follows:

w
(i)
t = w

(i)
t−1

p(Yt|X(i)
t ) p(C(i)

t |µ(i)
t )

q(C(i)
t |µ(i)

t , Yt)
∝ w

(i)
t−1

e
−Eimage(C(i)

t ,Yt)

σ2
obs e

−d2(C(i)
t ,µ

(i)
t )

σ2
d

N (fCE(µ
(i)
t , Yt),Σdef )

∝ w
(i)
t−1 exp

(
−Eimage(C(i)

t , Yt)

σ2
obs

)
exp

(
−d2(C(i)

t , µ
(i)
t )

σ2
d

)
,

(14)

where we have used the fact that C(i)
t is the mean and Σdef is very close to zero, implying that N (C(i)

t ,Σdef →
0) can be approximated by a constant for all particles.

2.2.5 Curve Evolution using Chan-Vese model

Many methods have been proposed which incorporate geometric and/or photometric (color, texture, in-
tensity) information in order to segment images robustly in presence of noise and clutter. In our case, in
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the prediction step above, fCE can be any edge-based or region-based curve evolution equation. In our
preliminary work, the Mumford-Shah functional [34] as modelled by Chan and Vese was used [9] to ob-
tain the curve evolution equation. In Section 2.3, we will describe a far-reaching generalization of this
segmentation methodology that will allow us to track in much more complex noisy environments.

For the Chan-Vese model [9], one applies the calculus of variations to minimize the following energy
Eimage:

Eimage =

∫
Ω

(I − c1)
2H(Ψ)dx dy +

∫
Ω

(I − c2)
2(1−H(Ψ)) dx dy + ν

∫
Ω

|∇H(Ψ)|dx dy , (15)

where c1,c2 and the Heaviside function H(Ψ) are defined as

c1 =

∫
I(x, y)H(Ψ)dx dy∫

H(Ψ)dx dy
, c2 =

∫
I(x, y)(1−H(Ψ))dx dy∫

(1−H(Ψ))dx dy
, H(Ψ) =

{
1 Ψ ≥ 0,

0 else,

and finally I(x, y) is the image and Ψ is the level set function. The energy Eimage can be minimized by
doing gradient descent via the following PDE [9, 34]:

∂Ψ

∂τ
= δϵ(Ψ)

[
ν div

(
∇Ψ

|∇Ψ|

)
− (I − c1)

2 + (I − c2)
2

]
,where δϵ(s) =

ϵ

π(ϵ2 + s2)
,

where τ is the evolution time parameter and the contour C is the zero level set of Ψ.

2.2.6 Dealing with Multiple Objects

In principle, the CONDENSATION filter [7] could be used for tracking multiple objects. The posterior
distribution will be multi-modal with each mode corresponding to one object. However, in practice it is
very likely that a peak corresponding to the dominant likelihood value will increasingly dominate over
all other peaks when the estimation progresses over time. In other words, a dominant peak is established
if some objects obtain larger likelihood values more frequently. So, if the posterior is propagated with
fixed number of samples, eventually, all samples will be around the dominant peak. This problem becomes
more pronounced in cases where the objects being tracked do not have similar photometric or geometric
properties. One may deal with this issue using the method in [57] by first finding the clusters within the
state density to construct a Voronoi tessalation [51] and then resampling within each Voronoi cell separately.
Other solutions proposed by [54] have also been tested for multiple object tracking.

2.2.7 Occlusions

Prior shape knowledge is necessary when dealing with occlusions. In particular, in [66], the authors incor-
porate “shape energy” in the curve evolution equation to deal with occlusions. Any such energy term can
be used in the proposed model to deal with occlusions. In numerical experiments, we have dealt with this
issue in a slightly different way by incorporating the shape information in the weighting step instead of the
curve evolution step, i.e., we calculate the likelihood probability for each particle using the image energy
Eimage (15) and a shape dissimilarity measure d2 as follows:

p(Yt|X(i)
t ) = λ1

 e

−E
(i)
image

σ2
obs

∑N
j=1 e

−E
(j)
image

σ2
obs

+ λ2

(
1− d2(Ψ(s),Ψ(i))∑N

j=1 d
2(Ψ(s),Ψ(j))

)
, (16)

where λ1 + λ2 = 1, and d2(Ψ(s),Ψ(i)) is the dissimilarity measure (modulo a rigid transformation) given

by, d2(Ψ(s),Ψ(i)) =
∫
Ω
(Ψ(s) − Ψ(i))2 h(Ψ(s))+h(Ψ(i))

2 dx dy, with h(Ψ) = H(Ψ)∫
Ω
H(Ψ) dx dy

, where Ψ(s)
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and Ψ(i) are the level set functions of a template shape and the i-th contour shape, respectively. The
dissimilarity measure gives an estimate of how different two given shapes (in particular, their corresponding
level sets) may be. So, higher values of d2 indicate more dissimilarity in shape. This strategy may be
justified by noting that in case of occlusion, Eimage will be higher for a contour that encloses the desired
region compared to a contour that excludes the occlusion. Since particle weights are a function of Eimage,
the MAP estimate will be a particle that is not the desired shape. However, using the weighting scheme
proposed above, particles which are closer to the template shape are more likely to be chosen than particles
with “occluded shapes” (i.e., shapes which include the occlusion).

2.3 Information-Theoretic Approach to Segmentation
The choice of the segmentation algorithm is very important to the success of our approach to visual track-
ing. We have considered the Chan-Vese model which only uses the first moment for segmentation for
the geometric particle filtering just considered. In our AFOSR work, we have developed a far-reaching
generalization employing all of the statistical moments [33, 29].

More precisely, we address the problem of image segmentation by means of active contours, whose evo-
lution is driven by the gradient flow derived from an energy functional that is based on the Bhattacharyya
distance. Because of the broad statistical nature of the flow, we believe that it may be very useful for target
tracking and has naturally been incorporated into the geometric observer framework described above. In
particular, given the values of a photometric variable, which is to be used for classifying the image pixels,
the active contours are designed to converge to the shape that results in maximal discrepancy between the
empirical distributions of the photometric variable inside and outside of the contours. This discrepancy is
measured by means of the Bhattacharyya distance that proves to be an extremely useful tool for solving the
problem at hand. The proposed methodology can be viewed as a generalization of the segmentation meth-
ods, in which the active contours maximize the difference between a finite number of empirical moments
of the “inside” and “outside” distributions.

2.3.1 Bhattacharyya Flow

Bhattacharyya Distance

In order to facilitate the discussion, we just consider the case of two classes (i.e., the problem of segmenting
an object of interest from the background), followed by describing the extension of the methodology to
multi-object scenarios.

In the two class case, the segmentation problem is reduced to the problem of partitioning the domain
of definition Ω ⊂ R2 of an image I(z) (with z ∈ Ω) into two mutually exclusive and complementary
subsets Ω− and Ω+. These subsets can be represented by their respective characteristic functions χ− and
χ+, which can in turn be defined by means of a level set function Ψ(z) : Ω → R as χ−(z) := H(−Ψ(z)),
χ+(z) := H(Ψ(z)) with z ∈ Ω, where H denotes the Heaviside function.

As above, given a level set function Ψ(z), its zero level set {z | Ψ(z) = 0, z ∈ Ω} is used to implicitly
represent a curve. For the sake of concreteness, we associate the subset Ω− with the support of the object of
interest, while Ω+ is associated with the support of corresponding background. In this case, the objective of
active contour based image segmentation is given an initialization Ψ0(z), construct a convergent sequence
of level set functions {Ψt(z)}t>0 (with Ψt(z)|t=0 = Ψ0(z)) such that the zero level set of ΨT (z) coincides
with the boundary of the object of interest for some T > 0.

We construct the sequence of level set functions via a gradient flow that minimizes a properly defined
cost functional. In our approach, the latter is derived in the following manner. First, the image to be
segmented I(z) is transformed into a vector-valued image of its local features J(z). Note that the feature
image J(z) ascribes to every pixel of I(z) a N -tuple of associated features, and hence it can be formally
represented as a map from Ω to RN . Subsequently, given a level set function Ψ(z), the following two
quantities are computed:

P−(x |Ψ(z)) =

∫
Ω
K−(x− J(z))χ−(z) dz∫

Ω
χ−(z) dz

=

∫
Ω
K−(x− J(z))H(−Ψ(z)) dz∫

Ω
H(−Ψ(z)) dz

, (17)
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and

P+(x |Ψ(z)) =

∫
Ω
K+(x− J(z))χ+(z) dz∫

Ω
χ+(z) dz

=

∫
Ω
K+(x− J(z))H(Ψ(z)) dz∫

Ω
H(Ψ(z)) dz

, (18)

where x ∈ RN , and K−(x) and K+(x) are two scalar-valued functions having compact or effectively
compact supports. Provided that the kernels K−(x) and K+(x) are normalized to have unit integrals, the
functions P−(x |Ψ(z)) and P+(x |Ψ(z)) given by (17) and (18) are kernel-based estimates of the proba-
bility density functions pdf of the image features observed over the sub-domains Ω− and Ω+, respectively.

The core idea of the our method is quite intuitive and it is based on the assumption that, for a properly
selected subset of image features, the “overlap” between the informational contents of the object and of
the background has to be minimal. In other words, if one thinks of the active contour as a discrimina-
tor that separates the image pixels into two subsets, then the optimal contour should minimize the mutual
information between these subsets. Note that for the case at hand, minimizing the mutual information is
equivalent to maximizing the Kullback-Leibler divergence between the pdf’s associated with the “inside”
and “outside” subsets of pixels. For the reasons discussed below, however, instead of the divergence, we
have developed a method to maximize the Bhattacharyya distance between the pdf’s. (The Bhattacharyya
distance is defined to be − log of the integral given in (20) below which defines the Bhattacharyya coeffi-
cient.) Specifically, the optimal active contour Ψ⋆(z) is defined as:

Ψ⋆(z) = arg inf
Ψ(z)

{B̃(Ψ(z))}, (19)

where
B̃(Ψ(z)) =

∫
x∈RN

√
P−(x |Ψ(z))P+(x |Ψ(z)) dx, (20)

with P−(x |Ψ(z)) and P+(x |Ψ(z)) being given by the equations (17) and (18), respectively.

Gradient Flow

In order to derive a scheme for minimizing (20), we need to compute its first variation. Accordingly, the
first variation of B̃(Ψ(z)) (with respect to Ψ(z)) is given by:

δB̃(Ψ(z))

δΨ(z)
=

1

2

∫
x∈RN

(
∂P−(x |Ψ(z))

∂Ψ(z)

√
P+(x |Ψ(z))

P−(x |Ψ(z))
+

∂P+(x |Ψ(z))

∂Ψ(z)

√
P−(x |Ψ(z))

P+(x |Ψ(z))

)
dx.

(21)
Differentiating (17) and (18) with respect to Ψ(z), one obtains:

∂P−(x |Ψ(z))

∂Ψ(z)
= δ(Ψ(z))

(
P−(x |Ψ(z))−K−(x− J(z))

A−

)
, (22)

and
∂P+(x |Ψ(z))

∂Ψ(z)
= δ(Ψ(z))

(
K+(x− J(z))− P+(x |Ψ(z))

A+

)
, (23)

where δ(·) is the delta function, and A− and A+ are the areas of Ω− and Ω+ given by
∫
Ω
χ−(z) dz and∫

Ω
χ+(z) dz, respectively.
By substituting (22) and (23) in (21) and combining the corresponding terms, one can arrive at:

δB̃(Ψ(z))

δΨ(z)
= δ(Ψ(z))V (z), (24)
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where

V (z) =
1

2
B̃(Ψ(z))(A−1

− −A−1
+ )+ (25)

+
1

2

∫
x∈RN

K+(x− J(z))
1

A+

√
P−(x |Ψ(z))

P+(x |Ψ(z))
dx− 1

2

∫
x∈RN

K−(x− J(z))
1

A−

√
P+(x |Ψ(z))

P−(x |Ψ(z))
dx.

Assuming the same kernel K(x) is used for computing the last two terms in (25), i.e. K(x) =
K−(x) = K+(x), the latter can be further simplified to the following form:

V (z) =
1

2
B̃(Ψ(z))(A−1

− −A−1
+ ) +

1

2

∫
x∈RN

K(x− J(z))L(x |Ψ(z)) dx, (26)

where

L(x |Ψ(z)) =
1

A+

√
P−(x |Ψ(z))

P+(x |Ψ(z))
− 1

A−

√
P+(x |Ψ(z))

P−(x |Ψ(z))
. (27)

Introducing an artificial time parameter t, the gradient flow of Ψ(z) that minimizes (20) is given by:

Ψt(z) = −δB̃(Ψ(z))

δΨ(z)
= −δ(Ψ(z))V (z), (28)

where the subscript t denotes the corresponding partial derivative, and V (z) is defined as given by either
(25) or (26).

From the viewpoint of statistical estimation, the cost function (20) can be thought of as accounting
for the fidelity of estimation of the optimal level set function to observed features of I(z). However, this
cost function does not take into consideration some plausible properties of the optimal solution, and, as
a result, minimizing (20) alone could be too sensitive to measurement noises and/or errors in the data.
In order to alleviate this sensitivity, one can attempt to filter out the spectral components of the solution
which belong to the noise subspace. Such filtering can be conveniently implemented using the Bayesian
estimation framework, which allows one to find the most likely solution given both the observed data and
a reasonable assumption regarding the nature of optimal Ψ(z). One can also regularize the solution via
constraining the length of the active contour, in which case the optimal level set Ψ⋆(z) is given by:

Ψ⋆(z) = arg inf
Ψ(z)

{
B̃(Ψ(z)) + α

∫
Ω

∥∇H(Ψ(z))∥ dz
}
, (29)

where ∇ denotes the operator of gradient, ∥ · ∥ is the Euclidean norm, and α > 0 is a regularization
constant, which controls the compromise between fidelity and stability. The gradient flow associated with
minimizing the cost functional in (29) can be shown to be equal to:

Ψt(z) = δ(Ψ(z)) (ακ− V (z)) , (30)

where κ is the curvature of the active contour. All the segmentation results reported in the present study
have been obtained via numerically solving (30) with the value of α set to be equal to 1.

2.3.2 Relationship with Kullback-Leibler Divergence

There exists a classical way to access similarity between the informational contents of two segmentation
classes by means of mutual information. In our case, using the mutual information is equivalent to using
the Kullback-Laibler divergence, whose symmetrized version is defined as:

D =
1

2

∫
RN

p1(x) log
p2(x)

p1(x)
dx+

1

2

∫
RN

p2(x) log
p1(x)

p2(x)
dx, (31)
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with p1(x) and p2(x) being the pdf’s associated with the segmentation classes. Note that the Kullback-
Laibler divergence can be turned into the Bhattacharyya coefficient under the substitution of the square
root function for the logarithm function in (31):

D̃ =
1

2

∫
RN

p1(x)

√
p2(x)

p1(x)
dx+

1

2

∫
RN

p2(x)

√
p1(x)

p2(x)
dx =

∫
RN

√
p1(x)p2(x)dx = B. (32)

The above similarity between the two criteria raises the question of the advantages and disadvantages of
using one criterion with respect to the other. Obviously, one of the advantages of using the Bhattacharyya
coefficient is related to its analytical form, which is much simpler than that of the Kullback-Leibler diver-
gence. As a result, the analytical derivations related to the former are usually much neater, shorter, and
easier to interpret as compared to the latter.

Yet another, much more crucial difference between the criteria in (31) and (32) stems from the prop-
erties of the functions they employ. Specifically, the logarithm has an extremely high sensitivity to the
variations of its argument for relatively small values of the latter (not to mention that it is undefined at
zero). In the case of non-parametric density estimation, the above property of the logarithm is obviously
a disadvantage, as it makes the Kullback-Leibler divergence prone to the errors caused by inaccuracies in
estimating the tails of probability densities. On the other hand, the square root is a well-defined function
in the vicinity of zero. Moreover, for relatively small values of its argument, the variability of the square
root is considerably smaller than that of the logarithm. As a result, the Bhattacharyya coefficient is less
susceptible to the influence of inaccuracies mentioned above.

2.3.3 Examples of Discriminative Features

In this subsection, a number of possible definitions of the feature vector are discussed. The set of examples
given below is by no means complete, but it rather represents the features frequently used in practice.

Formally, the transition from the data image I(z) : Ω → R to the vector-valued image J(z) : Ω → RN

of its features can be described by a transformation W{·} applied to I(z), i.e., J(z) = W{I(z)}. Hence,
the question of selecting a useful set of image features is essentially equivalent to the question of defining
a proper transformation W . Perhaps, the simplest choice here is to define the feature image J(z) to be
identical to I(z), which corresponds to the case of W being identity and N = 1. In this case, the features
used for the classification are the gray-levels of I(z), and the resulting segmentation procedure is essentially
histogram based [14].

Although the above choice has proven useful in numerous practical settings, it is definitely not the best
possible for situations when both object and background have similar intensity patterns. In this case, it
seems reasonable to take advantage of a relative displacement of these patterns with respect to each other
via transforming I(z) to the space of its partial derivatives. This transformation is performed by setting
W ≡ ∇, in which case the feature space becomes two-dimensional, i.e., N = 2.

As a next logical step, one can smooth the above gradient ∇I(z) using a set of low-pass filters with
progressively decreasing bandwidths. This construction brings us directly to the possibility to define W to
be a wavelet transform [32]. Note that, in this case, each pixel of the resulting J(z) carries information on
multiresolution (partial) derivatives of I(z). It should be noted that using the wavelet coefficients as dis-
criminative features for image segmentation has long been successfully used in numerous applications [58].

The dependency structure between the partial derivatives of I(z) can be captured by the structural
tensor defined as:

T(z) =

[
(∂z1I(z))

2 ∂z1I(z)∂z2I(z)
∂z1I(z)∂z2I(z) (∂z2I(z))

2

]
, (33)

with z = (z1, z2), and ∂z1 and ∂z2 denoting the corresponding partial derivatives. In this case, the feature
space is three dimensional, as for each z, J(z) is defined to be equal to[

(∂z1I(z))
2, ∂z1I(z)∂z2I(z), (∂z2I(z))

2
]
.
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Note, however, that this choice of the feature space is not linear since the structural tensor (33) is positive
definite, and therefore the pixels of J(z) lie on a non-linear manifold. Fortunately, the availability of kernel-
based methods for estimating probability densities defined over non-linear manifolds makes it possible to
apply our approach in this situation as well.

Another interesting choice of J(z) can be followed in the scenarios, in which I(z) appears as an element
of a sequence of tracking images. In this case, J(z) : Ω → R2 can be defined to be the vector field of local
displacements of the gray-levels of I(z). Specifically, let ∂tI(z) denotes the temporal (partial) derivative
of I(z). Let also G(z) be a two component, column vector with its first and second components equal to
∂z1I(z) ∂tI(x) and ∂z2I(z) ∂tI(x), respectively. Then, the gray-level constancy constraint can be shown
to result in the following least square solution for the local displacement field v(z):

v(z) = −T−1(z)G(z), ∀z ∈ Ω, (34)

with T(z) being the structure tensor given by (33). Consequently, in the case when the motion of the
tracked object is independent of that of its background, the feature image can be defined by setting J(z) =
v(z). We note that this choice seems to be reasonable for many tracking scenarios, where the background
motion is either negligible or associated with the ego-motion of camera, which rarely correlates with the
dynamics of tracked objects.

The local moments of I(z) [56], multiresolution versions thereof, and the local fractal dimension are
among many other image features, which could be used for segmentation. Note that a combined use
of all the features mentioned above is also possible. Thus, for example, by letting the feature vector
x = (x1, x2, x3) be composed of the intensity x1 and local velocity components x2, x3, one can perform
segmentation based on both gray-scale and motion information.

2.3.4 Kernel Based Estimation

The conditional densities p(x |x ∈ Ω−) and p(x |x ∈ Ω−) may be estimated using the kernel estimation
method. In this subsection, we briefly consider the problem of defining the kernel’s bandwidth, which
should be consistent with the data size for the estimates to be reliable.

In the discrete setting, kernel density estimation amounts to approximating the (unknown) pdf p(x) of
an N -dimensional random vector x according to:

f(x) =
1

n

n∑
i=1

Kσ(x− xi), (35)

where {xi}ni=1 are n independent realizations of x. In (35), the kernel Kσ(x) is parameterized by a vector
σ and has a unit integral, i.e.

∫
RN Kσ(x) dx = 1.

A number of possible definitions of the kernel Kσ(x) are possible, among which the most popular to
take Kσ(x) to be a Gaussian pdf, and this is the choice followed in this proposal. In order to facilitate the
numerical implementation of the density estimation, we use a separable (isotropic) form of the Gaussian
pdf, in which case Kσ(x) is defined as:

Kσ(x) = (2π)−N/2
N∏

k=1

σ−1
k exp

{
−x2

k/2σ
2
k

}
, (36)

where x1, x2, . . . , xN are the coordinates of x, and the standard deviations σ = {σk}Nk=1 control the
extension of Kσ(x) along each of the independent directions. It should be noted that the separability of
the kernel in (36) does not imply the separability of the estimate f(x) that is now given by:

f(x) =
1

n

n∑
i=1

Kσ1(x− xi
1)Kσ2(x− xi

2) · · ·KσN
(x− xi

N ), (37)
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with Kσk
= (
√

2πσ2
k)

−1 exp
{
−x2

k/2σ
2
k

}
for k ∈ {1, 2, . . . , N}.

The kernel method of density estimation has proven valuable in numerous applications. It is well
known, however, that effective use of this method requires proper choice of the bandwidth parameters σk.
When insufficient smoothing is done (i.e., the bandwidth parameters are too small), the resulting density
estimate is too rough and contains spurious features that are artifacts of the sampling process. On the
other hand, when excessive smoothing is done, important features of the underlying structure are smoothed
away. Consequently, to optimize the accuracy of the estimates in (17) and (18), the bandwidth parameters
{σk}Nk=1 should be properly defined. This will be a topic of investigation in our research, and in particular
we are considering an expectation maximization based approach for this purpose.

2.3.5 Multi-Object Case

In order to extend the applicability of the proposed method to the case when images are composed of more
than two segmentation classes, a multi-class version will now be described. In particular, in such a scenario,
the image domain Ω is considered to be a union of M (mutually exclusive) subdomains {Ωk}Mk=1, each of
which is associated with a corresponding (conditional) pdf pk(x). Consequently, the first step to be done
is to generalize the definition of the Bhattacharyya coefficient to the case of M densities. Such a natural
generalization is known as the average Bhattacharyya coefficient as given by [22]:

B =
2

M(M − 1)

M∑
i, j=1
j>i

∫
RN

√
pi(x) pj(x)dx. (38)

The above coefficient represents a cumulative measure of discrepancy between all the possible pairs of the
densities under consideration. Note that the normalization constant 2/(M(M − 1)) guarantees that the
coefficient (38) takes its values in the interval between 0 and 1.

The additivity of the construction in (38) makes it trivial to derive the corresponding gradient flow.
In fact, each additive term of the cost functional can be differentiated independently so that the resulting
gradient flow is given as a sum of the gradient flows related to the additive components in (38). In order to
complete the multi-class formulation of the Bhattacharyya flow, we will need to briefly describe how one
would use level sets in this context.

Obviously, in the multi-class case, using only one level set function would be insufficient to solve the
problem at hand. Consequently, we follow the multiphase segmentation formulation of [63] that uses p
level set functions {Ψi(z)}pi=1, which are capable of segmenting the image I(z) into (up to) 2p regions.
In particular, since one level set function partitions the image domain Ω into two sub-domains, p level
set functions can partition Ω into 2p sub-domains, each of which is labeled by the signs of the level set
functions {Ψi(z)}pi=1 in that sub-domain. The formulae for the multiphase gradient flow corresponding to
(38) can be easily obtained by plugging the results of Section 2.3.1 into the “templates” derived in [63],
mutatis mutandis.

2.3.6 Information-Theoretic Segmentation and Blind Source Separation

We have pursued a number of directions for the use of segmentation in visual tracking. First of all, there
is a similarity between the problem of image segmentation by means of active contours and the problem
of blind source separation as a specific instance of independent component analysis (ICA) [20]. The latter
is a reconstruction problem, in which a number of unknown source signals have to be recovered from
measurements of their algebraic mixtures. This problem has inspired the proposal of numerous solutions,
many of which are based on finding the directions - independent components - in a multi-dimensional space,
along which the mixtures (or the projections thereof) are as independent as possible. In this connection,
a number of information-based criteria, such as the Kullback-Leibler divergence, have been employed.
Returning to the problem of segmentation, one can think of a data image as a geometric mixture of sources,
i.e., of segmentation classes. In such a case, the active contour acts in a certain sense as an independent
component when trying to separate the image into as many independent regions as possible. It is quite
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interesting to note that the method proposed here employs the concept and tools, which are very much
similar to those used in ICA. This has been a nice research direction in the just completed AFOSR program.
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